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Deep Generative Models

• Shallow models learn simple internal representations 

• Deep models allow higher levels of abstractions and improve generalisation

• Multiple applications

• Simulation

• Anomaly Detection

• Data manipulation

• Different use cases have different  requirements: 

• Fast inference

• Real time training capability

• Fast training for large optimizations
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Simulation applications

Fast detector simulation ..

Examples in ATLAS, CMS, LHCb, ALICE. 

Mostly calorimeters, but also RICH, TPCs..

but also:

Detector design

Optimisation

Domain Adaptation

Monte Carlo agreement to real data
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S. Shirobokov et al., Workshop on Real 

World Experiment Design and Active 

Learning at ICML 2020, arxiv:2002.04632

Magnet system for muon beam optimisation



Multiple Architectures
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Variational AutoEncoders
• Variational (KL Divergence), arxiv:1312.6114

• Wasserstein (MMD), arxiv:1711.01558

• Sinkhorn arxiv:1810.01118
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A. Ghosh,Journal of Physics: Conference Series. Vol. 1525. No. 1. IOP, 2020.

K.Deja et al., IEEE Access 2020.



Generative Adversarial Networks

• Vanilla, Conditional, Auxiliary Classifier GAN

• Wasserstein, Cramer (arxiv:1704.00028)

• Complex topologies (ex. BiGAN, BIB-AE)
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E. Buhman et al., arxiv:2005.05334.

Wasserstein GAN for Cherenkov detector simulation:

D. Derkach et al., Nuclear Instruments and Methods in Physics Research Section A: 

Accelerators, Spectrometers, Detectors and Associated Equipment 952 (2020): 161804.



Detector response as images G. Khattak et al., ICMLA 2019

Convolutional layers for 51x51x25 pixels image: sparse, large dynamic range
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3DGAN

2D Conv:

2x faster &

Lower mem 

footprint!

F. Rehm et al., AAAI 2020, 
arXiv:2103.13698

3 Conv.



Detector response as graphs
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A. Hariri et al., arXiv:2104.01725

Calorimeter energy deposits as graphs

Data as a graph of connected hits

Connect hits using geometric constraints

Embedding requires large graphs ( ~105 nodes)

GrapSAGE: W. Hamilton, R. Ying, J. Leskovec, NIPS (2017), 

arXiv:1706.02216:

Inductive approach to 

generate embedding 

for unseen nodes



Detector Size..
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FastCaloGAN: full calorimeter fast 

simulation using 300 GANs

100 η slices (0.05 wide)

15 energy points

Electrons, Photons, Pions

Generated hits in Athena

Need to take training time into account!

M. Faucci Giannelli, 4th IML workshop, 2020



Results validation
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Physics validation

• Compare GAN images against Monte Carlo

• Depending on the application need few percent 
accurate representation of all relevant physics variables
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G. Khattak et al., ICMLA 2019



Physics validation (II)

• Triforce* DNN has been 

developed to distinguish 

different kind of particles 

and measure their energy 
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Systematic effects and 

interpretability
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Systematics: image similarity

GAN can exhibit mode-collapse or mode-drop

How much diversity in the generated sample? 

• Use the Structural Similarity Index

SSIM 𝒙, 𝒚 =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)

where 𝒙, 𝒚 are two samples to be compared

• Calculated on sliding windows, then averaged.

• Ours is a 3D problem: SSIM computed in xy plane, 3rd dimension is channel

• Adjust C1-C2 to the pixel dynamic range

SSIM 𝒙, 𝒚 = 1 ⇔ 𝒙 = 𝒚
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Systematics: Support size

Empirical evidence of the GAN low support size (Arora and Sanjeev, 2017)

• Learnt distribution not representative enough

Birthday paradox test (Brink, 2012): 

How many people need to be in one room so that P(at least two people have same birthday) > 0.5 ?

• 365 days in a year → 23 people is enough

Generalized problem: 

How many samples is it necessary to generate to have P(at least one pair of duplicates among the 

samples) > 0.5 ?

• (The answer)2 = estimate of the support size

17

https://arxiv.org/abs/1706.08224


Birthday paradox for GANs
Original birthday paradox problem

• Days in a year – finite set of possible values with discrete uniform 
distribution

• Unique duplicates definition – people born on the same day

GAN distribution

• Images – pixels of continuous values

• Multivariate continuous distribution → occurrence of exact 
duplicates has zero probability

• Duplicates as “similar enough” images

Exact duplicates

Not exact duplicates
But similar enough?

July 4 July 4

18

Similarity metrics depend on the use case and data type

K. Jaruskova, NeuriPS2020  ML4PS workshop



Support size estimates

• GAN samples significantly more similar → smaller support size

• Test depends strongly on duplicates definition

Energy-based duplicate definition 

Support size

≈ 400 samples

Not adapted to our problem?

K. Jaruskova, NeuriPS2020  ML4PS workshop

Support size

≈ 6400 samples

SSIM –based duplicate definition
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Systematics: rare events

In some cases it is important to 

reproduce correctly the topology 

and occurrence of rare events

20
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Computing resources
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Faster then Monte Carlo?

Reduced data representation reduce inference 

time but reduce phsyics performance

• Need ad-hoc optimisation strategy 
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Eliminated in 

INT8

Added for 

Quantization

2X Reduction in 

Latency

FP32: 3DGAN is 38000x faster than Monte Carlo (on Intel Xeon processors)

INT8: quantized 3DGAN is 68000x faster than Monte Carlo (FP32)

F. Rehm,  ICPRAM2021

in collaboration with Intel

Post training quantization (INT 8) using Intel DLBoost and iLoT tool



Training time

• Training the 3D convolutional GAN model (3M parameters) takes about 7 

days on a GPU

• Distributed training is essential 

• Need to keep physics under control

• Tested different data parallel approach on different hardware on HPC and 

Cloud
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Total training time:

1 hour on 128 v3 TPU cores 

Total training time: 3 hours on 256 Intel Xeons 

Total training time:

1 hour on 128 V100 GPUs 

Energy pattern along 

transver detector axis

Access to Cloud resources through CloudBank EU project



Summary
• High Energy Physics experiments are heavily investigating Generative 

Models for fast simulation

• High level of customization

• Increasing complexity

• Domain-specific knowledge is key 

• Model design and architecture otpimisation

• Results validation

• Models interpretability and performance systematic studies

• Efficient use of computing resources broadens the scope 
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Teaser: Quantum Generative Adversarial Networks

Explore quantum advantage in terms of:

• Compressed data representation in quantum states 

• Faster training with smaller number of parameters

• Support space of the learned distribution 

Simplify 3DGAN simulation problem

1D & 2D energy profiles from detector 

Train a hybrid classical-quantum GAN 
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Thanks!

Sofia.Vallecorsa@cern.ch

https://openlab.cern/

https://home.cern/
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https://openlab.cern/
https://home.cern/


Systematics: increasing statistics

• If a GAN is trained on N data points, how many new

points can be drawn?

• GAN can describe distribution better than training 

data

• Needs 10,000 GAN points to match 150 true points

• In terms of information:

• sample: only data points

• fit: data + true function

• GAN: data + smooth, continuous function

A. Butter et al., arxiv:2008.06545

Generalisation to 

multi-dimensional 

problem
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Most physics data sets described by continuous function → GAN can interpolate


